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MATHEMATICAL PROGRAMMING TECHNIQUES FOR SCHEDULING
SPACELAB CREW ACTIVITIES AND EXPERIMENT OPERATIONS

BY

Frank H,, Mathis
Ass, istant Professor of Mathematics

Baylor University

ABSTRACT

The objective of this report is to investigate
several mathematical programming techniques which may
be applied to the :_cheduling of experiments and crew
activities for Spacelab missions° We will discuss the
use of currently known methods, in particular zero-one
programming and heuristic dispatching,, In addition we
propose a new type of scheduling algorithm and present
examples to illustrate and test its use,.
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INTRODUCTION

In order to obtain a schedule of activities for a Space-
lab mission , a number of experiments must be assigned to
specific times in the mission so that a variety of constraints
are satisfied. Since this problem may be formulated as a
limited resource - project scheduling task, several well-tested
algorithms ,-xist for obtaining a good solution.

The use of zero-one programming as developed by Pritsker,
Watters and Wolf [4] and improved by several authors (see, for
example, I5]) has proved effective on small scheduling problems.
However, run time and computer storage requirements increase
rapidly with the number of variables present and may prove
prohibitive for use on a problem the size of a Spacelab mission.

On the otherhand, dispatching techniques, which take the
experiments to be scheduled in a specific order and assign each
to the first valid time in the mission, produce results with
relatively fast run-time and small storage requirements. How-
ever, these methods may fail to yield a good schedule° The
result is that a great deal of time must be spent investigating
and editing the timeline obtained from a dispatching scheduler
to obtain a better schedule°

Clearly there is a need for algorithms which can obtain a
good quality timeline and not exceed unreasonable time and stor-
age requirements°
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OBJECTIVES

The objective of this report is to investigate current
techniques for scheduling with resourcc-constraintso In
particular, we discuss the use of zero-one programming and
dispatching methods° We will then introduce a new algorithm
which combines characteristics of both existing methods to
generate a valid schedule of experlments_ "Exampleb and test
results are presented to illustrate the feasibility of the
use of this algorithm on data typical to Spacelab missions.
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DEFINITION OF PROBLEM

In order to formulate the problem of scheduling a Space-
lab mission, we assume that each experiment has been divided
into a number of individual tasks which we denote as models.

A model in turn is divided into separate ste_ each of'which
demand a specific set of requirements. In addition, each
model may have to be scheduled several times. We denote this
by the number of performances of a model.

The constraints imposed on the schedule are of the fol-
lowing types. A step may have several resource requirements.
These include the use of a crewman or a certain piece of
equipment as well as electrical power, computer memory, data
transmission and so forth. Two steps may have a sequencing
constraint. That is, step A must be scheduled before step B
with specified minimum and maximum delays between the two
steps. Each model will have an earl_ and a late start time be-
tween which the first step of eac_performanc--_ust-_=_ scud -
uled. Finally, many steps must be scheduled during one of
several specific time intervals of the mission. For example,
a step may require the ability to view a certain star. Thus
that step can only be scheduled during those times in the
Spacelab orbit that the star is visible. We refer to this
type of requirement as s target. We assume that we know the
times at which any target is available during the mission.

Thus the problem is to schedule as many as possible of
the specified number of performances of each model such that
all constraints are satisfied° We refer to the resulting
schedule as a timeline.

As an example of the type problem encountered in a Space-
lab mission we will use a data file which was constructed in
June 1980 for Spacelab I. We point out that this file is not
currently in use; however, we feel it can serve to typify the
size and structure of the problem. Table I summerlzes this
data.
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TABLE I

DATA for 8PACELAB I (June 1980 version)

,

Length of tlmeline 165.61 Hours

Number of models 218

Number of performances 935

Total number of steps 3497

Number of crew available 6

Types of equipment 38

Other types of resource constraints 4

Number to tarEets 72
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TYPES OF SCHEDULERS

I. Zero-one Progrannning.

The use of zero-one programing was first applied to
scheduling problems in a series of papers by Prltsker, Watters
and Wolf [4]. In this approach the timeline is divided into
discrete time intervals. Corresponding to each interval a
variable must be defined for every step in the problem. A
variable is assigned the value of "one" if the corresponding
step starts during that time £ntcrval and a value of "zero"
otherwise. One advantage of this formulation is that the
problem is easily represented by a set of linear equalities
and inequalities. We illustrate this below. Refer to Table
II for a listing of the required variables.

TABLE II

Variables for zero-one progrmrrning

i - Subscript referring to a model.

j - Subscript referring to a performance.

k - Subscript referring to a step.

t - Subscript referring to a time
interval.

x (ijkt) - A zero-one variable assigned the
value of I if step k of perform-
ance J of model i starts in time
period t, and 0 otherwise.

d (ik) - Duration of the kth step of model i.

min (ik) - Hinimum delay after step k of model i.

max (ik) - Maximum delay after step k of model i.

E (i) - Early start time for model i.

L (i) - Late start time for model i.

N (i) - Number of steps for model i.

P (i) - Number of performances for model i.
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TABLE II

Variables for zero-one progra_nlng (cont !

m - Subscript rcferrini; to a resource.

r (ikm) - Amount of resource m required by
• step k of model i.

R (rot) - Amount of resource m a_,all_ble at
t_me t.

The various constraints ma F be defined as follows:

Sequencing examples for steps k and k+l of mode] L, performance j:

L(i) L(

_t " X(ijkt)] + d(ikl + min(ik) 4-_t X(ijk+It) I

t-E(i) t-__,,_

and

L(1) L(i)

t=_(i)(t • X(lJk+It)_ " =_ _t X(iJkt)} + d(ik)+ max(Ik)t E(i

A
Resour,_e example (including targets) for resource m at time t:

P(i) N(_i) t

i J=l k=l t=t - d(ik)

In addition we require a step definitio_ :onstraint for
each step. This will assure that the step is assigned to at
most one start time.

LCi)

X(iJkt) _de 1, for all i,j and k.

t=E(i)
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Also a performance completion constraint is needed for
each performance. This will allow no step in a performance
to 5e scheduled unless the last step is a_so scheduled.

L(i] N(i) L(il

_ X(ijkt) = _ (N(i).X(l_ N(i.l,tl),for all

t=E(i) k-I t=E_£) i and jr

Using the above constraints one ma)_ program the problem
to optimize several objective functions° We list some exampleso

To obtain the most steps possible we select the X(ijkt)
to maximize_.

P(i) N(i) L(i]

i j=l k=l t=E(i)

Similarly maximizing the following functions produces the
most performances, models and experiment time respectively.

P(i) L(i)

_ _ X(ij N(i)t),
i j=l t=E(i)

L(i)

_ X(i P(i) N(i) t),

i t=E(i)

P(i) N(i) L(i)

i j=l k=l t=E(i)

Since good algorithms exist to handle integer programming
with zero-one variables (see, for example, chapter XI of [3]),
the above approach appears as an attractive means to solve the
scheduling problemo However, if one applies this technique to
Spacelab data, obvioas problems arise°
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First the largest time interval _hich _'ould reasonably
define the tilneline is one minute, This means that a formu-

lation of 3497 step,_ over 105 hours would require well over
3 m_llion variables. Although techniquo_ _uch a_ the method
of Talbot and Pc.tterson I5] can greatly ,tecrea_e this storage
requirement, the time requi'red to sol_e the zero-one problem
remains substantial. This is because the most efficient zero-

one algoritlms employ an implicit enume'ration technique in
which after a feasible solution is ob.tained, thc method hack
tracks until nil possihle solutions are directly or indirectly
observed. The larger the probl._m the longer it takes to ac-
complish the back tracking, In |S] results for test problems
with up to 800 zero-one variables and 300 constraints are
reported, Ilsing an IBM 370/100 the authors oi, tain run-times
of 6 to 30 seconds CPII, If this were extrapolated to a prob-
lem the sir.e of a Spacel_b mission, run times of 5 to 30 hours
might be expected. These numbers were obt::ined assuming thal
the time increases proportionally with size.. A more reason-
able assumption would dictate that run-time increases with
the cube of the size, Indeed this is u..._uall>" the case for
linear programming applications,, l-xtrapolating under this
assumption would result in a run-time of over 90(I0 years!

ti, Dispatching Techniques.

Because el' tl_e large storage a,_d long run-time require-
ments of the zero-one formulation, there is a need for alter-
native methods if one is faced with a prol_lem of any si:e_
The most common approach for scheduling large problems is a
dispatching technique. In these methods one pl,ce_ an order
on the list of steps to be schedule,l, then following this
order the steps are assigned to the first time at which ,_11
constraints are satisfied. Tl:is allows, for a schedule to he

obtained very rapidly with minimal storage requirements.
Clearly, the order on the steps is crucial to the structure
of the resulting timeline. In some cases, one may ohtaitx a
good timeline by choosing the order I_ased on a heuristic rule
or "rule of thumb",, For example, one may wi:;h to schedule
those steps which require the most resource first, l)avis
and Patterson [1] have tested several heuristic dispatching
rules on various scheduling problems. Also see Grone and
Mathis [2] for a discussion of dispatching methods al-plied
to Spacelab missions.

We note that the current scheduler in use at MSI:C is a

dispatching type program which may ttse either a random ordering
or an order fixed by the operator. We will refer to this pro-
gram as TLP for Timeline ProRram. In a test envolving 30
runs of 'rLP using the random orderiug on our s_tmple data, _e
fo_,,.:d that a valid timeline is obtained in less than 2 minute:_

or" elapsed tinte.
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None of the runs produced a ti_elLne with all of the desired
models scheduled; the _verage run scheduled approximately qO_,
of the models and 87t of the per£ormances.

There are several problems with a dispatching scheduler.
'there is no gu_rantee that the res_lting schedule is near
optional. Also, heuristics seem to he very problem dependent.
That is. a rule which works well on a part'icular problem may
prove disastrous for the next problem. Thus, a dispatching
scheduler may generate a valid ti_eline very qutckl_,, but
then a considerable amount of time must be spent editing the
schedul_ in order to improve it_ quality_ This is indeed the
case with TI,P. 'rhe t il_eline produced hy TI,P can b_" converted
into one in which 9,_,_of the models ,rod9b_ of the performances
schedule, hut ou!y after much invest "Rat ion and alterat ion
requiring several m'_u-hours of effort.
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A NEW ALGORITIIM

We now propose a new algorithm which combines some ele-
ments of l_oth zero-one and dispatching techniques We wish
to construct a method which has the flexibility of zero-one
programming so that after a step is scheduled we may later
move the step to another place in the timeline. However,
in order to speed up the algorithm, we will not attempt a
full back tracking procedure but rather depend on a heuristic
rule to dictate which steps should move,

To define our method, we divide constraints into two

groups. A constraint is called _ dependent if the amount
available to a step at a particular time will change as other
steps are scheduled at the same time Crew usage, equipment
and other resources are examples of" step dependent constraints.

Sto_pw independent constraints are those which do not depend on i
many steps are running at the same time. F.xamples are

early and late start time, sequencing, and targets

We say that a step is assigned to a feasible time if no
step independent constraint is violated, _timeline is
valid if all constraints are satisfied.

The general idea of the algorithm is to start with a
feasible timeline and then proceed from the front to the back
of the timeline checking each time for _alidity If at any
time it is found that a step dependent constraint is violated,
a particular step scheduled a, that time is selected anti moved
to a future time in the t ime.tne

Whenever a step is moved, all other steps in the same
model must be checked and possibly moved to assure that max-
imum and minimum delay requirements are satisfied, We will
not got into the details of this process but rather denote
it by the phrase "move other steps as necessary"., If, during

an attempt to move ste_ j to a new time, any step in the same
model can not be reassigned to a feasible time, we will say
that step j cannot be reassigned,

If at any time, a step dependent constraint is violated
but no step can be reassigned, then a step is selected anti
removed from the timeline. In this case all other steps in
the same performance must be removed. Of course, the method
of choosing a step to be moved or removed is vital to the
quality of the resulting timeline. As with a dispatching

t

method, one may use any of several heuristic rules to accom-
plish this. In the algorithm to follow, we will move the 4
step which uses the most of the violated re:;ource,
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This strategy is used in an attempt to cause as many steps
-_ as possible to schedule at t_e present time and to minimxze :,

the number of moves required We do not claim that this _"
rule is necessarily the best.

We refer the reader to table III for a list Qf variables
} used in the algorithm. "_ formal statement of the algoritlm

follows ;

TABLE III
t

A Variables last for the Scheduling Algorithm

N - Number of steps,,

st(j) - Starting time of step j,,

d(j) - Duration of step j

T - Current time under investigation
for validity

T (old) - Previous time investigated,,

T (new} - Time to which a stp may be re-
assigned.

J (T) - Set of indices j such that step
j is scheduled during time To
That is,

stCj)L T-" stCj) + dCj)

L - Set of indices corresponding to
steps for which time reassignments
were not possible.,

M Number of step dependent constraints,,

R (k,T) Amount of resource k available at
time T.

r (jk] - Amount of resource k required by
step j,

S (k,T) Scaled requirement for resource k
at time TI

S (.k,l"),:i _ rCjk) "_ / R (k,T}.
j ( J (T)

- The empty set.
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ALGORITttM

1. Assign st (j), J-l,2,..- N, to its earliest feasible
start time. Set 1'=-1.

2. Set T (old) - T ; Set L- ¢.

3. If _j such that st (J)_ T (old)_ = ¢ , stop ;

otherwise set T - rain f sttj) such that st(j)_T (old)_ .

J

4_ Find all j in J (T).

S. Find k which corresponds to the maximum S (k,T), k-l,2, o_°Mo

b. If S (k,T) _ 1, go to 2 ; otherwise continue.

7. If J (T) - I, _ _, let j be the first index in L,
remove step j from the timeline and go to 4; otherwise
continue.

8. Find i in J[L)-L to maximize r(ik).

g. Set T (new) _ rain _ st_) ' d(j) so that j is in J(T) and

J

I0o Attempt to reassign st(i) tc the first feasible time •

T (new); more other steps as necessary.

11. If st(i) can be reassigned go to 4; otherwise, add

i to L and go to 7.

We point out that hecause reassignment of a step may
cause other steps to move to a time that has already been
checked for validity, a single application of the algorithm
may not produce a valid tinelineo In practice the algorithm
must be repeated until no moves are necessary°
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EXAMPLES

In order to illustrate the operation o,f the algorithm_
we present several examples. The first is a test problem
used in [410 Also see chapter XII of [3]. .The problem con-
tains 6 models, 8 individual steps and 3 types of resources. 2
The data is summerized in TaSle IV.

TABLE IV
DA'rA FOR EXAMPLE 1. !

_ |w i __

EarIie_t Latest Resource Requirements
Index Model Step Start Duratlon Start

....... t ,.2 3
1 I 1 0 4 1 5 3 2

2 1 2 4 3 5 0 1 1

3 2 1 0 3 5 2 0 2

4 3 1 1 3 4 1 1 1

5 3 2 4 2 7 2 2 0

6 4 I I 2 7 2 0 0

7 5 I 2 5 4 2 i I

8 6 i 2 i 8 i 3 0

i , f i ,i _ i

Amount of Resource Available at all times 8 5 4

X:_XlI-13
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The initial feasible t_meline is shown in figure io At
T=I the timeline is valid_ Moving to T=2 we find resource i
has the maximum scaled requirement and step i is the greatest
user. We attempt to reassign step I ro T(new) = 3; however,
this would cause step 2 to be scheduled after its latest start.
Hence, step I cannot be reassigned. We next attempt to reassign
step 3 to T(new). This results in the timeline shown in figure 2.

The timeline is now valid at T=2. We proceed with the
algorithm and after six more reassignments we obtain the time-
line shown in figure 3. Note that all times are valid.

It is interesting to note that McHillian [3] obtained the
schedule shown in figure 4 using zero-one progran_ning_ Here
the problem is formulated with 33 variables, 37 constraints,
and the objective to minimize schedule length_ McMillian re-
ports a run-time of 2_3 seconds CPU o_ a_ IBM 7044. McMillian
also applied a dispatching rule at "minimum slack-time first" to
the above example. Slack time is the amount of time between the
earliest start time and the latest start time. The result is

shown in figure 5. Note that model 3 did not scheduler

As a second example, a computer program was designed to
impliment our algorithm on the DIGITAL VAX-II/780. The first
i00 models of the Spacelab data file were selected as an initial
test case. This represents a problem with 1911 steps. The
algorithm successfully ran in II minutes 23 seconds of CPU time.
A valid timeline was produced with 1624 steps scheduled_ This
represents about 85% of the steps requested_

Finally the same program was applied to the full 218

models in the Spacelab data file. Although not all constraints
were used - some of the maximum and minimum delay_ were not
checked - the algorithm produced a timeline in 48 minutes of CPU
time. Of the 3497 steps requested, 3001 or about 86% were sched-
uled.
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RESOURCE k=l 7 10 13 8 4 4 2 0 0
k=2 3 4 8 5 4 4 2 0 0USAGE
k=3 4 5 6 4 2 2 2 0 0

1
, _|

2
: I

3
!

4
L
! 1

5

6

' ' '1 _TIME 11 2 [ 3 _1 4 ' 5 i 6 t 7 8 9

Figure 1. Initial Feasible Timeline.

i

k=l 5 8 11 11 6 6 2 0 0
RESOURCE k=2 3 4 8 8 4 4 2 0 0
USAGE k=3 2 3 4 6 4 4 2 0 0

2 :

3

4

5

6

7 !

1 , | ! I t I
TIME 1 ' 2 3 '.l 5 6 7 8 9

Figure 2. Timeline after one move.
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k=l 5 8 8 8 6 6 5 2 0
RESOURCE

k=2 3 4 4 5 4 4 5 1 0
USAGE

k=3 2 3 3 4 4 4 4 1 0

1

2
: , , !

: 3 :
4

! I
5

! a
6

7

8

• a i |
I !

TIME 1 ] 2 ' 3 | 4 t 5 J 6 ' 7 8 9

Figure 3. Final Valid Timeline.

k=l 5 6 8 8 8 8 5 0 0
RESOURCE k=2 3 4 5 5 4 4 5 0 0
USAGE

k,=3 2 3 4 4 4 -! 4 0 0

1
!

,)

3
} -i

5

6
t

7
o-

TIME 1 _2 t3 t4 15 t6 t7 t8 _ 9

Figure 4. Timeline from zero-one method.
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k=l 7 7 7 7 5 5 3 3 1
k=2 3 3 3 4 5 4 5 2 1
k=3 4 4 4 3 2 2 2 2 1

1 I
2

, !
3

4
I- --4

5

6
•_ ,, 0

7

8

I } i ! I t I i i I
, , , , , , -_

TIHE 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5. Timellne from dispatching method.
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CONCLUSIONS AND RECOMMENDATIONS

Based on our preliminary experimental results, the al-
Borithm presented is feasJ:_le for use on Spacelab scheduling
problems, although the resulting timellne seems of comparable
quality with those obtained by TLP while the expense of run-
time is substantially greater than that of TLP. Nevertheless,
we feel that the flexibility furnished by the algorithm warrents
further investigation at least with respect to two points.
First more efficient searching and sorting techniques may be
employed in the coding of the algorithm to decrease run-time.
More importantly, the use of alternative heuristic rules for
the choice of steps to move or remove should be examined. We
feel that this investigation could lead to great improvement
in the performance of the algorithm as well as the quality of
_he resulting timeline.
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